1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | #include<stdio.h> #include<stdlib.h> #define TILE_W 32 #define MAX_BLOCK 32 int getSize(char* fileName); void writeMatrix(char* fileName, int SIZE, float* matrixToSave); float* readMatrix(char* fileName); __global__ void matMultiply(float *Ad, float *Bd, float *AxBd, int SIZE, int iter){ int i = threadIdx.y + blockIdx.y*TILE_W; int j = threadIdx.x + blockIdx.x*TILE_W; int k; float AxB_ij; if(iter == 0){ for(k=0; k<SIZE; k++){ AxB_ij += Ad[i*SIZE + k] * Bd[k*SIZE +j]; } AxBd[i*SIZE +j] = AxB_ij; } else { while (i<SIZE){ while (j<SIZE){ AxB_ij = 0; for(k=0; k<SIZE; k++){ AxB_ij += Ad[i*SIZE+k] * Bd[k*SIZE+j]; } AxBd[i*SIZE +j] = AxB_ij; j += blockDim.x * gridDim.x; } i += blockDim.y * gridDim.y; } } } int main(){ float *A_dev, *B_dev, *AxB_dev; int memSize; int blockSize; float ratio; int residue; int kerIter; int thSize; float *A, *B, *AxB; int SIZE_A, SIZE_B; A = (float*) readMatrix("A.mat"); SIZE_A = (int) getSize("A.mat"); B = (float*) readMatrix("B.mat"); SIZE_B = (int) getSize("B.mat"); if(SIZE_A != SIZE_B){ printf("size not match\n"); exit(-1); } AxB = (float*) malloc(SIZE_A*SIZE_A * sizeof(float)); if(AxB ==NULL){ free(AxB); printf("malloc failed\n"); exit(-1); } memSize = SIZE_A*SIZE_A * sizeof(float); //prepare memory and values on GPU cudaMalloc((void**) &A_dev, memSize); cudaMemcpy(A_dev, A, memSize, cudaMemcpyHostToDevice); cudaMalloc((void**) &B_dev, memSize); cudaMemcpy(B_dev, B, memSize, cudaMemcpyHostToDevice); cudaMalloc((void**) &AxB_dev, memSize); //ditermin the grid and block dimensions ratio = SIZE_A / TILE_W; residue = SIZE_A % TILE_W; if (ratio<MAX_BLOCK){ if(residue==0) blockSize = (int) ratio; else blockSize = ((int) (SIZE_A / TILE_W)) + 1; kerIter = 0; }else{ blockSize = MAX_BLOCK; kerIter = 1; } dim3 block(blockSize, blockSize); if(TILE_W > SIZE_A) thSize = SIZE_A; else thSize = TILE_W; dim3 threads(thSize, thSize); //*** kernel function call matMultiply<<<block, threads>>>(A_dev, B_dev, AxB_dev, SIZE_A, kerIter); //*** //transfer the GPU output to Host cudaMemcpy(AxB, AxB_dev, memSize, cudaMemcpyDeviceToHost); writeMatrix("multTest_CU.mat", SIZE_A, AxB);; free(A); free(B); free(AxB); //deallocat the cuda memory cudaFree(A_dev); cudaFree(B_dev); cudaFree(AxB_dev); } float* readMatrix(char* fileName); int getSize(char* fileName); void writeMatrix(char* fileName, int SIZE, float* matrixToSave); float* readMatrix(char* fileName){ int i, j, ni; int SIZE; float* matrix; FILE *mfPtr; if((mfPtr = fopen(fileName, "r")) == NULL) printf("File could not be opened\n"); else{ fscanf(mfPtr, "%d", &SIZE); matrix = (float*) malloc(SIZE*SIZE * sizeof(float)); if(NULL == matrix){ free(matrix); printf("malloc failed\n"); exit(-1); } for(i=0; i<SIZE; i++){ ni = i*SIZE; for(j=0; j<SIZE; j++){ fscanf(mfPtr, "%f", &matrix[ni+j]); } } fclose(mfPtr); } return matrix; } void writeMatrix(char* fileName, int SIZE, float* matrixToSave){ int i, j, ni; FILE *mfPtr; if((mfPtr = fopen(fileName, "w")) == NULL){ printf("File could not be opened\n"); } else{ fprintf(mfPtr, "%d\n", SIZE); printf("%s is saved\n", fileName); printf("(size of %d by %d)\n", SIZE, SIZE); for (i=0; i<SIZE; i++){ ni = i*SIZE; for (j=0; j<SIZE; j++){ fprintf(mfPtr, "%4.4f\n", matrixToSave[ni+j]); } } fclose(mfPtr); } } int getSize(char* fileName){ int SIZE; FILE *mfPtr; if((mfPtr = fopen(fileName, "r")) == NULL) printf("File could not be opened\n"); else{ fscanf(mfPtr, "%d", &SIZE); } return SIZE; } |
Direct link: https://paste.plurk.com/show/407905