1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | #include <stdio.h> #define println(strInput) printf("%s\n",strInput); #define PROCESS_COUNT 5 #define RESOURCE_COUNT 5 // resource allocation graph deadlock detection implement int main() { println("RaG implement by Jonathan Huang"); println("===== initial conditions ====="); println("Process: P1,P2,P3,P4,P5; Resource R1,R2,R3,R4,R5;"); int tmpM = 0; int tmpN = 0; // rag[m][n] ,m(row) for process , n(column) for resource. int rag[PROCESS_COUNT+RESOURCE_COUNT+1][PROCESS_COUNT+RESOURCE_COUNT+1]; // wfg[m][m] , represent for the wait-for graph int wfg[PROCESS_COUNT+1][PROCESS_COUNT+1]; int adj[PROCESS_COUNT+1][PROCESS_COUNT+1]; //initial the rag for(tmpM = 0 ; tmpM < PROCESS_COUNT+RESOURCE_COUNT+1 ; tmpM++ ) { for(tmpN = 0 ; tmpN < PROCESS_COUNT+RESOURCE_COUNT+1 ; tmpN++ ) { rag[tmpM][tmpN] = 0; } } //init the rag relationship //process view fill rag[1][PROCESS_COUNT+1] = 1; rag[2][PROCESS_COUNT+3] = 1; rag[2][PROCESS_COUNT+4] = 1; rag[2][PROCESS_COUNT+5] = 1; rag[3][PROCESS_COUNT+5] = 1; rag[4][PROCESS_COUNT+2] = 1; //resource view fill rag[PROCESS_COUNT+2][1] = 1; rag[PROCESS_COUNT+1][2] = 1; rag[PROCESS_COUNT+4][3] = 1; rag[PROCESS_COUNT+5][4] = 1; rag[PROCESS_COUNT+3][5] = 1; println("\nResource Allocation graph in direct graph mapping matrix :"); for(tmpM = 0 ; tmpM < PROCESS_COUNT+RESOURCE_COUNT+1 ; tmpM++ ) { if(tmpM != 0 ){ if(tmpM > 5) { printf("R%d\t",tmpM-PROCESS_COUNT,PROCESS_COUNT+1); } else { printf("P%d\t",tmpM,PROCESS_COUNT+1); } }else{ printf("\tP1 P2 P3 P4 P5 R1 R2 R3 R4 R5"); } for(tmpN = 0 ; tmpN < PROCESS_COUNT+RESOURCE_COUNT+1 ; tmpN++ ) { if(tmpM != 0 && tmpN != 0) { printf(" %d ",rag[tmpM][tmpN]); } } println(" "); } println("\nCorresponding wait-for graph (generated by RAG) :"); //initial the wfg by translate from wag to wfg int tmpZ = 0; int wfgEdges = 0; for(tmpM = 0 ; tmpM < PROCESS_COUNT+1 ; tmpM++ ) { if(tmpM != 0 ){ printf("P%d\t",tmpM,PROCESS_COUNT+1); }else{ printf("\tP1\tP2\tP3\tP4\tP5"); } for(tmpN = 0 ; tmpN < PROCESS_COUNT+1 ; tmpN++ ) { wfg[tmpM][tmpN] = 0; adj[tmpM][tmpN] = 0; if(tmpM != 0 && tmpN != 0) { ///------------ for(tmpZ = 0 ; tmpZ < RESOURCE_COUNT+1 ; tmpZ++ ) { if( (rag[tmpM][PROCESS_COUNT+tmpZ] == 1) && (rag[PROCESS_COUNT+tmpZ][tmpN] == 1) ) { wfg[tmpM][tmpN] = 1; adj[tmpM][tmpN] = 1; wfgEdges++; } } ///------------- printf("%d\t",wfg[tmpM][tmpN]); } } println(" "); } //use adjacency martix to find walks by wait for graph edges count println("\n=======Use adjacency martix to find walks by wait for graph edges count.===="); printf("Do the matrix multiplication from A^1 to A^(Edges) ==> total edges : %d\n",wfgEdges); int tmpX = 0; int circleCount = 0; int tmpMatrix[PROCESS_COUNT+1][PROCESS_COUNT+1]; for(tmpZ = 2;tmpZ < wfgEdges+1 ; tmpZ++) { for(tmpM = 0 ; tmpM < PROCESS_COUNT+1 ; tmpM++ ) { for(tmpN = 0 ; tmpN < PROCESS_COUNT+1 ; tmpN++ ) { tmpMatrix[tmpM][tmpN] = 0; } } for(tmpM = 0;tmpM < PROCESS_COUNT+1 ;tmpM++) { for(tmpN = 0;tmpN < PROCESS_COUNT+1;tmpN++) { for(tmpX = 0;tmpX < PROCESS_COUNT+1;tmpX++) { if(tmpM >0 && tmpN > 0 && tmpX >0){ tmpMatrix[tmpM][tmpN] += adj[tmpM][tmpX] * wfg[tmpX][tmpN]; } } // printf("%d,%d ",tmpM,tmpN); } // printf("\n"); } for(tmpM = 0 ; tmpM < PROCESS_COUNT+1 ; tmpM++ ) { for(tmpN = 0 ; tmpN < PROCESS_COUNT+1 ; tmpN++ ) { adj[tmpM][tmpN] = tmpMatrix[tmpM][tmpN]; } } circleCount = 0; for(tmpX = 0; tmpX < PROCESS_COUNT+1;tmpX++) { circleCount = circleCount + adj[tmpX][tmpX]; } printf("%d edges circle count : %d\n",tmpZ,circleCount ); if(circleCount > 0) { println("^^^^^^^ circle detected ^^^^^^^^^"); break; } } return 0; } |
Direct link: https://paste.plurk.com/show/327901