1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | Debug Loss: target_masks shape before resize: torch.Size([1, 8, 8]) Epoch 50/50 | Batch 10820/10821 | Loss: 0.0003 loss_ce: 0.0003 loss_mask: 0.0000 loss_dice: 0.0000 Debug Dataset: no annotations, creating placeholder with mask_size: (8, 8) Debug Dataset: final masks shape: torch.Size([1, 8, 8]) Debug Dataset: final labels shape: torch.Size([1]) Debug Train: imgs shape: torch.Size([1, 3, 128, 128]) Debug Train: target 0 masks shape: torch.Size([1, 8, 8]) Debug Train: target 0 labels shape: torch.Size([1]) Debug: VAE latents shape: torch.Size([1, 4, 16, 16]) Debug: ODISEModel input shape: torch.Size([1, 4, 16, 16]) Debug: UNetEncoder input latent shape: torch.Size([1, 4, 16, 16]) Debug: After conv_in: torch.Size([1, 320, 16, 16]) Debug: After down_block 0: torch.Size([1, 320, 8, 8]) Debug: After down_block 1: torch.Size([1, 640, 4, 4]) Debug: After down_block 2: torch.Size([1, 1280, 2, 2]) Debug: After down_block 3: torch.Size([1, 1280, 2, 2]) Debug: UNet encoded features shape: torch.Size([1, 1280, 2, 2]) Debug: PixelDecoder input shape: torch.Size([1, 1280, 2, 2]) Debug: After input_proj: torch.Size([1, 256, 2, 2]) Debug: After upsample 0: torch.Size([1, 256, 4, 4]) Debug: After upsample 1: torch.Size([1, 256, 8, 8]) Debug: Final mask_features shape: torch.Size([1, 256, 8, 8]) Debug: Final outputs_mask shape: torch.Size([1, 10, 8, 8]) Debug Train: outputs pred_logits shape: torch.Size([1, 10, 2]) Debug Train: outputs pred_masks shape: torch.Size([1, 10, 8, 8]) Debug Matcher: pred_logits shape: torch.Size([1, 10, 2]) Debug Matcher: pred_masks shape: torch.Size([1, 10, 8, 8]) Debug Matcher: out_prob shape: torch.Size([10, 2]) Debug Matcher: out_mask shape: torch.Size([10, 8, 8]) Debug Matcher: tgt_ids shape: torch.Size([1]) Debug Matcher: tgt_mask shape: torch.Size([1, 8, 8]) Debug Matcher: out_mask_flat shape: torch.Size([10, 64]) Debug Matcher: tgt_mask_flat shape: torch.Size([1, 64]) Debug Loss: src_masks shape: torch.Size([1, 8, 8]) Debug Loss: target_masks shape before resize: torch.Size([1, 8, 8]) Epoch 50/50 完成 | Avg Loss: 0.0525 訓練完成! (base) jovyan@unzip-workspace-0-2:/mnt/nfs/nina/nina/segg$ ls segg.py segmentation_output (base) jovyan@unzip-workspace-0-2:/mnt/nfs/nina/nina/segg$ cd segmentation_output (base) jovyan@unzip-workspace-0-2:/mnt/nfs/nina/nina/segg/segmentation_output$ ls best_odise_model.pth final_odise_model.pth (base) jovyan@unzip-workspace-0-2:/mnt/nfs/nina/nina/segg/segmentation_output$ |
Direct link: https://paste.plurk.com/show/LlAH2lR2Rpn8lajJN7JV