1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | 將目標檢測模型的頭部改為 Transformer-style 架構是個很好的想法,這可以讓模型獲得更強的上下文建模能力和對象關係理解。以下是如何實現這一改進的研究和代碼框架: ### Transformer-Style 檢測頭的優勢 1. **全局上下文**:Transformer 可以通過自注意力機制捕獲圖像的全局上下文關係 2. **位置靈敏度**:使用位置編碼可以讓模型更好地理解對象的空間位置 3. **跨尺度特徵融合**:可以更有效地整合不同尺度的特徵 4. **對小物體敏感**:對於小目標的檢測往往有更好的性能 ### DETR (DEtection TRansformer) 風格的檢測頭 以下是一個受 DETR 啟發的 Transformer-style 檢測頭的實現方案: ```python import torch import torch.nn as nn import torch.nn.functional as F class TransformerDetectionHead(nn.Module): def __init__(self, in_channels, num_classes, num_queries=100, hidden_dim=256, nheads=8, num_encoder_layers=6, num_decoder_layers=6): super().__init__() self.num_queries = num_queries self.num_classes = num_classes # 將特徵圖轉換為序列 self.conv = nn.Conv2d(in_channels, hidden_dim, kernel_size=1) # 位置編碼 self.pos_encoder = PositionEmbedding2D(hidden_dim) # 查詢嵌入 (object queries) self.query_embed = nn.Embedding(num_queries, hidden_dim) # Transformer 編碼器-解碼器 encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=nheads) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) decoder_layer = nn.TransformerDecoderLayer(d_model=hidden_dim, nhead=nheads) self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_decoder_layers) # 預測頭: 類別和邊界框 self.class_embed = nn.Linear(hidden_dim, num_classes + 1) # +1 for background self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) # (cx, cy, w, h) # 輸出激活 self.activation = nn.Sigmoid() def forward(self, x): # 特徵圖轉換 h = self.conv(x) # 保存原始尺寸 bs, c, h, w = h.shape # 添加位置編碼 pos = self.pos_encoder(h) # 展平特徵圖為序列 h_flatten = h.flatten(2).permute(2, 0, 1) # (hw, bs, c) pos_flatten = pos.flatten(2).permute(2, 0, 1) # (hw, bs, c) # Transformer 編碼 memory = self.transformer_encoder(h_flatten + pos_flatten) # 準備解碼器的查詢嵌入 query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) # (num_queries, bs, hidden_dim) # Transformer 解碼 tgt = torch.zeros_like(query_embed) hs = self.transformer_decoder(tgt, memory) # (num_queries, bs, hidden_dim) # 預測類別和邊界框 outputs_class = self.class_embed(hs) # (num_queries, bs, num_classes+1) outputs_coord = self.activation(self.bbox_embed(hs)) # (num_queries, bs, 4), 值範圍 [0, 1] # 重新排列輸出 outputs_class = outputs_class.permute(1, 0, 2) # (bs, num_queries, num_classes+1) outputs_coord = outputs_coord.permute(1, 0, 2) # (bs, num_queries, 4) return outputs_class, outputs_coord # 輔助子模塊 class PositionEmbedding2D(nn.Module): def __init__(self, hidden_dim=256): super().__init__() self.row_embed = nn.Embedding(50, hidden_dim // 2) self.col_embed = nn.Embedding(50, hidden_dim // 2) def forward(self, x): h, w = x.shape[-2:] # 限制最大尺寸 h = min(h, 50) w = min(w, 50) # 生成網格坐標 i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) # 獲取位置嵌入 x_emb = self.col_embed(i) y_emb = self.row_embed(j) # 生成位置編碼網格 pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x ``` ### 整合到現有模型中 這種 Transformer-style 檢測頭可以替換原來基於卷積的檢測頭,完整的模型架構會是: ```python class TransformerObjectDetectionModel(nn.Module): def __init__(self, unet, num_classes): super().__init__() self.encoder = UNetEncoder(unet) self.detection_head = TransformerDetectionHead( in_channels=1280, # UNet 特徵維度 num_classes=num_classes, num_queries=100, # 每幅圖像查詢的目標數量 hidden_dim=256, nheads=8 ) def forward(self, x, t=0): # 通過encoder獲取特徵 feat = self.encoder(x, t) # 通過Transformer檢測頭 return self.detection_head(feat) ``` ### 改進損失函數 對於 Transformer-style 檢測頭,通常使用二分匹配損失(Hungarian Loss): ```python class HungarianLoss(nn.Module): def __init__(self, num_classes, weight_class=1, weight_bbox=5, weight_giou=2): super().__init__() self.num_classes = num_classes self.weight_class = weight_class self.weight_bbox = weight_bbox self.weight_giou = weight_giou # 類別損失 self.class_loss = nn.CrossEntropyLoss(reduction='none') def forward(self, outputs, targets, device): # 解包輸出 pred_logits, pred_boxes = outputs # (bs, num_queries, num_classes+1), (bs, num_queries, 4) # 為每個批次個別處理 batch_size = pred_logits.shape[0] total_loss = 0 for b in range(batch_size): batch_targets = targets[b] # (n_targets, 6) - [class_idx, cx, cy, w, h, conf] if batch_targets.shape[0] == 0: # 如果沒有目標,只計算類別損失(所有都應該是背景) background_pred = pred_logits[b, :, 0] background_target = torch.ones_like(background_pred) total_loss += self.class_loss(pred_logits[b], torch.zeros(pred_logits.shape[1], dtype=torch.long, device=device)).sum() continue # 目標類別 tgt_classes = batch_targets[:, 0].long() # 目標邊界框 (cx, cy, w, h) tgt_boxes = batch_targets[:, 1:5] # 匈牙利匹配算法 indices = self.hungarian_matcher(pred_logits[b], pred_boxes[b], tgt_classes, tgt_boxes, device) idx_pred, idx_tgt = indices # 類別損失 class_loss = self.class_loss(pred_logits[b, idx_pred], tgt_classes[idx_tgt]) # 邊界框損失 # L1 損失 l1_loss = F.l1_loss(pred_boxes[b, idx_pred], tgt_boxes[idx_tgt], reduction='none').sum(-1) # IoU/GIoU 損失 iou_loss = 1 - self.box_iou( self.box_cxcywh_to_xyxy(pred_boxes[b, idx_pred]), self.box_cxcywh_to_xyxy(tgt_boxes[idx_tgt]) )[0].diag() # 總損失 loss = ( self.weight_class * class_loss + self.weight_bbox * l1_loss + self.weight_giou * iou_loss ).sum() total_loss += loss return total_loss / batch_size, { 'class_loss': self.weight_class * class_loss.mean().item() if 'class_loss' in locals() else 0.0, 'l1_loss': self.weight_bbox * l1_loss.mean().item() if 'l1_loss' in locals() else 0.0, 'iou_loss': self.weight_giou * iou_loss.mean().item() if 'iou_loss' in locals() else 0.0, 'total_loss': total_loss.item() / batch_size } # 匈牙利匹配器(略) def hungarian_matcher(self, pred_logits, pred_boxes, tgt_classes, tgt_boxes, device): # 簡易版本 - 實際應該使用Hungarian算法 n_preds = pred_logits.shape[0] n_targets = tgt_classes.shape[0] if n_targets == 0: return (torch.arange(0, n_preds, device=device), torch.arange(0, n_preds, device=device)) # 計算成本矩陣 cost_class = -pred_logits[:, tgt_classes] # L1 距離 cost_bbox = torch.cdist(pred_boxes, tgt_boxes, p=1) # IoU 距離 cost_giou = -self.generalized_box_iou( self.box_cxcywh_to_xyxy(pred_boxes), self.box_cxcywh_to_xyxy(tgt_boxes) ) # 最終成本 cost = ( self.weight_class * cost_class + self.weight_bbox * cost_bbox + self.weight_giou * cost_giou ) # 簡單貪婪匹配 (實際應使用匈牙利算法) indices = [] for i in range(min(n_targets, n_preds)): # 找到成本最小的匹配 if cost.numel() == 0: break i, j = torch.unravel_index(torch.argmin(cost), cost.shape) indices.append((i.item(), j.item())) # 移除已匹配的預測和目標 cost[i, :] = float('inf') cost[:, j] = float('inf') if not indices: return torch.tensor([], device=device, dtype=torch.int64), torch.tensor([], device=device, dtype=torch.int64) indices = list(zip(*indices)) return torch.tensor(indices[0], device=device, dtype=torch.int64), torch.tensor(indices[1], device=device, dtype=torch.int64) # 邊界框工具函數 def box_cxcywh_to_xyxy(self, x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_iou(self, boxes1, boxes2): area1 = self.box_area(boxes1) area2 = self.box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, inter def box_area(self, boxes): return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def generalized_box_iou(self, boxes1, boxes2): # 計算IoU iou, inter = self.box_iou(boxes1, boxes2) # 計算包含兩個框的最小外接矩形的面積 lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area ``` ### 訓練調整 使用Transformer架構的模型通常需要更多的訓練時間和更好的初始化: 1. **更長的訓練時間**:Transformer模型通常需要更多的訓練輪次 2. **更平緩的學習率**:建議使用較小的初始學習率,例如 1e-5 3. **權重初始化**:特別關注Transformer權重的初始化 4. **批次大小**:如果可能,使用較大的批次大小 5. **數據增強**:更多的數據增強有助於預防過擬合 ### 結論與建議 轉換到Transformer-style的檢測頭是一個很好的想法,特別是如果您需要處理複雜場景和多物體檢測。然而,這也帶來了以下挑戰: 1. **計算成本**:Transformer模型的訓練和推理成本更高 2. **數據需求**:通常需要更多的訓練數據 3. **超參數敏感**:對學習率、批次大小等超參數更敏感 對於您的腰果檢測任務,如果數據集規模不大,建議先嘗試一個簡化版的Transformer架構,或者考慮使用預訓練的DETR或Mask R-CNN模型進行微調。 希望這些見解和代碼幫助能夠改進您的目標檢測性能! |
Direct link: https://paste.plurk.com/show/OpeJ0jaKzAl2v3FAoDTJ