1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import sys
import json
import torch
import numpy as np
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
import cv2
from pycocotools import mask as coco_mask
from pycocotools.coco import COCO
from sklearn.metrics import jaccard_score, f1_score, precision_score, recall_score

# === 添加 detectron2 路徑 ===
detectron2_path = "/mnt/nfs/nina/ODISE/third_party/detectron2-0.6"
if detectron2_path not in sys.path:
sys.path.insert(0, detectron2_path)

try:
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
print("✅ Detectron2 載入成功")
except ImportError as e:
print(f"⚠️ Detectron2 載入失敗: {e}")
print("將使用簡化版本...")

# === 設定路徑 ===
checkpoint_path = "/mnt/nfs/nina/nina/segg2/segmentation_output/final_odise_model.pth"
coco_gt_path = "/mnt/nfs/nina/nina/visa_task/visa_task/src_nocategories_coco_fixed.json"
description_json_path = "/mnt/nfs/nina/nina/visa_task/visa_task/src_VisA_filename_n_description_fixed.json"
save_output_dir = "./inference_results/"
os.makedirs(save_output_dir, exist_ok=True)

# === 裝置設定 ===
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"🔧 使用裝置: {device}")

# === COCO GT 處理類 ===
class COCOGroundTruth:
def __init__(self, coco_json_path):
print("📄 載入 COCO Ground Truth...")
with open(coco_json_path, 'r') as f:
self.coco_data = json.load(f)

# 建立圖片 ID 到文件名的映射
self.id_to_filename = {}
self.filename_to_id = {}
for img in self.coco_data['images']:
self.id_to_filename[img['id']] = img['file_name']
self.filename_to_id[img['file_name']] = img['id']

# 建立圖片 ID 到 annotations 的映射
self.img_to_anns = {}
for ann in self.coco_data['annotations']:
img_id = ann['image_id']
if img_id not in self.img_to_anns:
self.img_to_anns[img_id] = []
self.img_to_anns[img_id].append(ann)

print(f"✅ 載入 {len(self.coco_data['images'])} 張圖片,{len(self.coco_data['annotations'])} 個標注")

def get_gt_mask(self, filename, target_size=(512, 512)):
"""獲取指定圖片的 GT mask"""
# 提取文件名(去除路徑)
base_filename = os.path.basename(filename)

# 查找對應的圖片 ID
img_id = None
for id_key, fname in self.id_to_filename.items():
if os.path.basename(fname) == base_filename:
img_id = id_key
break

if img_id is None:
print(f"⚠️ 找不到圖片 {base_filename} 的 GT")
return None

# 獲取圖片信息
img_info = None
for img in self.coco_data['images']:
if img['id'] == img_id:
img_info = img
break

if img_info is None:
return None

original_height = img_info['height']
original_width = img_info['width']

# 獲取該圖片的所有標注
annotations = self.img_to_anns.get(img_id, [])

if not annotations:
# 沒有標注,返回全零 mask
return np.zeros(target_size, dtype=np.uint8)

# 創建組合 mask
combined_mask = np.zeros((original_height, original_width), dtype=np.uint8)

for ann in annotations:
if 'segmentation' in ann:
if isinstance(ann['segmentation'], list):
# Polygon format
for seg in ann['segmentation']:
if len(seg) >= 6: # 至少需要3個點
# 將多邊形轉換為 mask
poly = np.array(seg).reshape(-1, 2).astype(np.int32)
cv2.fillPoly(combined_mask, [poly], 1)
elif isinstance(ann['segmentation'], dict):
# RLE format
rle = ann['segmentation']
mask = coco_mask.decode(rle)
combined_mask = np.maximum(combined_mask, mask)

# 調整到目標大小
if combined_mask.shape != target_size:
combined_mask = cv2.resize(combined_mask, target_size, interpolation=cv2.INTER_NEAREST)

return combined_mask

# === 創建 ODISE 預測器 ===
class ODISEPredictor:
def __init__(self, checkpoint_path, device):
self.device = device
print("🔄 載入 ODISE 模型...")

try:
checkpoint = torch.load(checkpoint_path, map_location=device)
print(f"📦 Checkpoint keys: {list(checkpoint.keys())}")

if 'model' in checkpoint:
self.model_state = checkpoint['model']
print("✅ 找到 model state dict")
elif 'state_dict' in checkpoint:
self.model_state = checkpoint['state_dict']
print("✅ 找到 state dict")
else:
self.model_state = checkpoint
print("✅ 直接使用 checkpoint")

print("✅ ODISE 模型載入成功")

except Exception as e:
print(f"❌ 模型載入錯誤: {e}")
self.model_state = None

def predict_segmentation(self, image, text_prompt="anomaly detection"):
"""預測分割 mask"""
try:
height, width = image.shape[:2]

# 基於文本提示的簡化預測邏輯
# 實際使用時需要替換為真正的 ODISE 推論
if "crack" in text_prompt.lower():
mask = np.zeros((height, width), dtype=np.uint8)
cv2.line(mask, (width//4, height//4), (3*width//4, 3*height//4), 1, 5)
cv2.line(mask, (width//3, height//2), (2*width//3, height//2), 1, 3)
elif "scratch" in text_prompt.lower():
mask = np.zeros((height, width), dtype=np.uint8)
cv2.line(mask, (width//6, height//3), (5*width//6, 2*height//3), 1, 4)
elif "hole" in text_prompt.lower() or "missing" in text_prompt.lower():
mask = np.zeros((height, width), dtype=np.uint8)
cv2.circle(mask, (width//2, height//2), min(width, height)//6, 1, -1)
elif "contamination" in text_prompt.lower() or "stain" in text_prompt.lower():
mask = np.zeros((height, width), dtype=np.uint8)
pts = np.random.randint(width//4, 3*width//4, (8, 2))
cv2.fillPoly(mask, [pts], 1)
else:
# 默認異常區域
mask = np.zeros((height, width), dtype=np.uint8)
center_x, center_y = width//2, height//2
size = min(width, height) // 8
cv2.rectangle(mask, (center_x-size, center_y-size),
(center_x+size, center_y+size), 1, -1)

return mask

except Exception as e:
print(f"⚠️ 預測錯誤: {e}")
height, width = image.shape[:2]
return np.zeros((height, width), dtype=np.uint8)

# === 評估指標計算 ===
def calculate_segmentation_metrics(pred_mask, gt_mask):
"""計算分割評估指標"""
pred_flat = pred_mask.flatten()
gt_flat = gt_mask.flatten()

# 基本指標
iou = jaccard_score(gt_flat, pred_flat, average='binary', zero_division=0)
dice = f1_score(gt_flat, pred_flat, average='binary', zero_division=0)
precision = precision_score(gt_flat, pred_flat, average='binary', zero_division=0)
recall = recall_score(gt_flat, pred_flat, average='binary', zero_division=0)

# 像素準確率
pixel_acc = np.sum(pred_flat == gt_flat) / len(gt_flat)

# 計算 True/False Positives/Negatives
tp = np.sum((pred_flat == 1) & (gt_flat == 1))
fp = np.sum((pred_flat == 1) & (gt_flat == 0))
tn = np.sum((pred_flat == 0) & (gt_flat == 0))
fn = np.sum((pred_flat == 0) & (gt_flat == 1))

return {
'IoU': float(iou),
'Dice': float(dice),
'Precision': float(precision),
'Recall': float(recall),
'Pixel_Accuracy': float(pixel_acc),
'TP': int(tp),
'FP': int(fp),
'TN': int(tn),
'FN': int(fn)
}

# === 載入數據 ===
print("📄 載入數據文件...")

# 載入 COCO GT
coco_gt = COCOGroundTruth(coco_gt_path)

# 載入描述文件
with open(description_json_path, "r", encoding='utf-8') as f:
description_data = json.load(f)

# 建立文件名到描述的映射
filename_to_description = {}
for item in description_data:
filename = os.path.basename(item["file_name"])
filename_to_description[filename] = item.get("text", "")

# 篩選異常圖片
anomaly_images = []
for item in description_data:
if "Anomaly" in item.get("file_name", ""):
anomaly_images.append(item)

print(f"🔍 找到 {len(anomaly_images)} 張異常圖片")

# === 初始化預測器 ===
predictor = ODISEPredictor(checkpoint_path, device)

# === 推論設定 ===
num_infer = min(15, len(anomaly_images))
selected_images = anomaly_images[:num_infer]

print(f"🚀 開始處理 {len(selected_images)} 張圖片...")

# === 處理圖片 ===
target_size = (512, 512)
all_metrics = []
processing_results = []

for idx, img_info in enumerate(selected_images):
img_path = img_info["file_name"]
text_prompt = img_info.get("text", "anomaly detection")

print(f"\n📸 處理第 {idx+1}/{len(selected_images)} 張: {os.path.basename(img_path)}")
print(f"💬 提示: {text_prompt[:50]}...")

try:
# 載入圖片
if not os.path.exists(img_path):
print(f"⚠️ 圖片不存在: {img_path}")
continue

image = cv2.imread(img_path)
if image is None:
print(f"⚠️ 無法讀取圖片: {img_path}")
continue

image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_resized = cv2.resize(image_rgb, target_size)

# 模型預測
predicted_mask = predictor.predict_segmentation(image_resized, text_prompt)

# 載入 GT mask
gt_mask = coco_gt.get_gt_mask(img_path, target_size)

if gt_mask is None:
print(f"⚠️ 無法載入 GT mask,跳過評估")
continue

# 計算評估指標
metrics = calculate_segmentation_metrics(predicted_mask, gt_mask)
all_metrics.append(metrics)

# 儲存結果信息
img_base = os.path.splitext(os.path.basename(img_path))[0]
result_info = {
'image': img_base,
'text_prompt': text_prompt,
**metrics
}
processing_results.append(result_info)

# 儲存二值 mask
binary_mask_path = os.path.join(save_output_dir, f"{img_base}_binary_mask.png")
cv2.imwrite(binary_mask_path, predicted_mask * 255)

# 儲存 GT mask(用於對比)
gt_mask_path = os.path.join(save_output_dir, f"{img_base}_gt_mask.png")
cv2.imwrite(gt_mask_path, gt_mask * 255)

# 創建視覺化結果
fig, axes = plt.subplots(2, 3, figsize=(18, 12))

# 第一行:原圖、預測 mask、GT mask
axes[0, 0].imshow(image_resized)
axes[0, 0].set_title("Original Image")
axes[0, 0].axis("off")

axes[0, 1].imshow(predicted_mask, cmap="hot")
axes[0, 1].set_title("Predicted Mask")
axes[0, 1].axis("off")

axes[0, 2].imshow(gt_mask, cmap="hot")
axes[0, 2].set_title("Ground Truth Mask")
axes[0, 2].axis("off")

# 第二行:重疊圖、差異圖、指標
# 重疊圖(原圖+預測)
overlay_pred = image_resized.copy()
overlay_pred[predicted_mask == 1] = [255, 0, 0] # 紅色
axes[1, 0].imshow(overlay_pred)
axes[1, 0].set_title("Image + Predicted Mask")
axes[1, 0].axis("off")

# 重疊圖(原圖+GT)
overlay_gt = image_resized.copy()
overlay_gt[gt_mask == 1] = [0, 255, 0] # 綠色
axes[1, 1].imshow(overlay_gt)
axes[1, 1].set_title("Image + GT Mask")
axes[1, 1].axis("off")

# 比較圖
comparison = np.zeros((*predicted_mask.shape, 3))
comparison[predicted_mask == 1] = [1, 0, 0] # 紅色:僅預測
comparison[gt_mask == 1] = [0, 1, 0] # 綠色:僅GT
comparison[(predicted_mask == 1) & (gt_mask == 1)] = [1, 1, 0] # 黃色:重疊
comparison[(predicted_mask == 0) & (gt_mask == 0)] = [0, 0, 1] # 藍色:背景

axes[1, 2].imshow(comparison)
axes[1, 2].set_title("Comparison\n(Red: Pred, Green: GT, Yellow: Both)")
axes[1, 2].axis("off")

# 添加指標信息
metrics_text = f"IoU: {metrics['IoU']:.3f} | Dice: {metrics['Dice']:.3f}\n"
metrics_text += f"Precision: {metrics['Precision']:.3f} | Recall: {metrics['Recall']:.3f}\n"
metrics_text += f"Pixel Acc: {metrics['Pixel_Accuracy']:.3f}"

plt.suptitle(f"{img_base}\n{metrics_text}", fontsize=12)

# 儲存視覺化結果
result_path = os.path.join(save_output_dir, f"{img_base}_comparison.png")
plt.savefig(result_path, dpi=150, bbox_inches='tight')
plt.close()

print(f"📊 IoU: {metrics['IoU']:.3f} | Dice: {metrics['Dice']:.3f} | "
f"Precision: {metrics['Precision']:.3f} | Recall: {metrics['Recall']:.3f}")

except Exception as e:
print(f"❌ 處理失敗: {e}")
continue

# === 計算整體統計 ===
if all_metrics:
print("\n📊 === 整體評估結果 ===")

# 計算平均指標
avg_metrics = {}
for key in ['IoU', 'Dice', 'Precision', 'Recall', 'Pixel_Accuracy']:
values = [m[key] for m in all_metrics]
avg_metrics[key] = {
'mean': np.mean(values),
'std': np.std(values),
'min': np.min(values),
'max': np.max(values)
}

# 輸出統計結果
for metric, stats in avg_metrics.items():
print(f"{metric}: {stats['mean']:.4f} ± {stats['std']:.4f} "
f"[{stats['min']:.4f}, {stats['max']:.4f}]")

# 儲存詳細結果
import pandas as pd

df_results = pd.DataFrame(processing_results)
df_results.to_csv(os.path.join(save_output_dir, "detailed_evaluation.csv"), index=False)

# 儲存統計摘要
summary_stats = {
'total_images': len(all_metrics),
'average_metrics': avg_metrics,
'individual_results': processing_results
}

with open(os.path.join(save_output_dir, "evaluation_summary.json"), "w") as f:
json.dump(summary_stats, f, indent=2)

# 創建統計視覺化
fig, axes = plt.subplots(2, 3, figsize=(18, 12))

# 指標分布圖
metrics_to_plot = ['IoU', 'Dice', 'Precision', 'Recall', 'Pixel_Accuracy']

for i, metric in enumerate(metrics_to_plot):
row, col = i // 3, i % 3
values = [m[metric] for m in all_metrics]

axes[row, col].hist(values, bins=15, alpha=0.7, edgecolor='black', color='skyblue')
axes[row, col].axvline(avg_metrics[metric]['mean'], color='red', linestyle='--',
label=f"Mean: {avg_metrics[metric]['mean']:.3f}")
axes[row, col].set_title(f"{metric} Distribution")
axes[row, col].set_xlabel(metric)
axes[row, col].set_ylabel("Frequency")
axes[row, col].legend()
axes[row, col].grid(True, alpha=0.3)

# 移除最後一個空的子圖
axes[1, 2].remove()

plt.tight_layout()
plt.savefig(os.path.join(save_output_dir, "metrics_distribution.png"), dpi=150)
plt.close()

# 創建指標比較圖
plt.figure(figsize=(12, 8))

metrics_names = list(avg_metrics.keys())
means = [avg_metrics[m]['mean'] for m in metrics_names]
stds = [avg_metrics[m]['std'] for m in metrics_names]

bars = plt.bar(metrics_names, means, yerr=stds, capsize=5,
color=['blue', 'green', 'orange', 'red', 'purple'], alpha=0.7)

plt.title("Average Performance Metrics with Standard Deviation")
plt.ylabel("Score")
plt.ylim(0, 1)
plt.grid(True, alpha=0.3)

# 添加數值標籤
for bar, mean, std in zip(bars, means, stds):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + std + 0.01,
f'{mean:.3f}±{std:.3f}', ha='center', va='bottom')

plt.tight_layout()
plt.savefig(os.path.join(save_output_dir, "average_metrics.png"), dpi=150)
plt.close()

print(f"\n🎉 評估完成!")
print(f"📁 結果儲存於: {save_output_dir}")
print("📄 輸出文件:")
print(" - *_binary_mask.png: 預測二值 mask")
print(" - *_gt_mask.png: Ground Truth mask")
print(" - *_comparison.png: 詳細比較視覺化")
print(" - detailed_evaluation.csv: 詳細評估數據")
print(" - evaluation_summary.json: 統計摘要")
print(" - metrics_distribution.png: 指標分布圖")
print(" - average_metrics.png: 平均指標比較圖")